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Abstract
In this paper we study the phase diagram of the disordered Ising ferromagnet.
Within the framework of the Gaussian variational approximation it is shown
that in systems with a finite value of the disorder in dimensions D = 4 and
D < 4 the paramagnetic and ferromagnetic phases are separated by a spin-
glass phase. The transition from paramagnetic to spin-glass state is continuous
(second order), whereas the transition between spin-glass and ferromagnetic
states is discontinuous (first order). It is also shown that within the considered
approximation there is no replica symmetry breaking in the spin-glass phase.
The validity of the Gaussian variational approximation for the present problem
is discussed, and we provide a tentative physical interpretation of the results.

PACS numbers: 75.10.Nr, 05.50.+q, 64.60−I, 75.50.−y

1. Introduction

Phase transitions in the random temperature Ising ferromagnets have been intensively studied
theoretically, numerically and experimentally during the last decades. The theoretical interest
has mainly been focused on the critical behaviour in the vicinity of the paramagnetic–
ferromagnetic phase transition point Tc in weakly disordered systems [1]. Renormalization
group considerations show that if the temperature is not too close to Tc, the critical behaviour
is essentially controlled by the fixed point of the pure system (so that disorder produces only
irrelevant corrections), while in the close vicinity of Tc the critical behaviour turns out to be
different from that of the pure system and is characterized by a new universal (independent of
the disorder strength) fixed point.

On these grounds it is widely believed that the critical behaviour of the disordered system
is universal, and the strength of the disorder affects only the size of the critical region near Tc

(but not the critical behaviour itself). In other words, the critical behaviour of systems with a
finite value of the disorder must be the same as that of the weakly disordered systems. Most of
1 On leave from: Landau Institute for Theoretical Physics, Moscow.
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the numerical simulations (in particular for the two-dimensional systems) support this idea, see
e.g. [2], although some of the numerical results seem to indicate that the critical behaviour can
be non-universal and characterized by critical exponents depending on the disorder strength [3].

In this paper we consider the problem of the phase transitions in the disordered Ising
ferromagnet from a somewhat different point of view. Instead of studying the critical behaviour,
we propose first to address a simpler point concerning the nature of the phases in such systems.
We stress that the usual assumption that the random temperature Ising ferromagnet can only be
in the paramagnetic or in the ferromagnetic state is, at least, questionable, a point first raised
by Ma and Rudnick [4]. Before studying such details as the critical properties, one should
first clarify what kind of phases and what kind of transitions can exist in such a system.

A general reason for asking such a question comes from the fact that the saddle-point
equations which describe the local minima of the disordered Hamiltonian in the (supposed)
paramagnetic region have an exponentially large number of solutions. Physically this situation
is quite clear: due to the spatial fluctuations of the local transition temperatures one can find
a macroscopic number of ‘ferromagnetic islands’, well separated in space, that spend most
of the time in a state with a non-zero local magnetization which can either be positive or
negative. As long as these islands are rare (i.e. away from the supposed ferromagnetic
transition temperature), they lead to the existence of an exponential number of local minima.
Moreover, the presence of rare exponentially large islands results in the existence of non-
analytic (Griffith-like) contributions to the thermodynamic functions [5].

An indirect indication that the phase behaviour of such systems could be more complicated
than described by the renormalization group has been obtained in the framework of the so-
called non-perturbative renormalization group (RG) approach [6]. In the latter, the existence
of many different local minima of the disordered Hamiltonian is taken into account in the form
of a replica symmetry breaking scheme, and it was eventually found that the renormalization
flow leads to the strong coupling regime at the finite spatial scale, and not to the expected
fixed points. This may indicate that something is basically wrong with the supposed (trivial)
minimum of the renormalized Hamiltonian.

It has been suggested that on lowering the temperature, the localized ferromagnetic
islands become close and strongly interacting, which leads to a transition to the global
ferromagnetic state [7]. The solution of the saddle-point equations within the Gaussian
variational approximation and the replica framework described in the next sections show that
this is not the only possibility. We indeed find that upon lowering the temperature the global
state of the system can become a spin glass before the ferromagnetic state sets in. In this
spin-glass state the total magnetization remains zero, and there is an effective freezing of local
(random) spin configurations (which leads to a non-zero value of the spin-glass Edwards–
Anderson order parameter). Besides, one finds that in this spin-glass state the two-point
spin–spin correlation function is described by a temperature-independent finite correlation
length (it is interesting to note that this length coincides with that at which the strong coupling
regime of the RG approach [6] sets in), whereas the (spin-glass type) four-spin correlation
function becomes critical at the spin-glass phase transition point. Finally, on lowering the
temperature further the global ferromagnetic state eventually sets in via a first-order phase
transition.

The existence of an intermediate spin-glass phase in a system where a priori no
frustrations, no competition of interactions occur is puzzling. This was stressed by Sherrington
[8] in a response to the perturbative analysis (not within the framework of the replica method)
of Ma and Rudnick [4] that predicted such a spin-glass phase. Besides the potential flaws
associated with the perturbative treatments, the problem lies in the fact that it is hard to
imagine a disordered ferromagnet in a state where the 4-spin spin-glass susceptibility is
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larger than the square of the 2-spin ferromagnetic susceptibility [8] nor in a state with a
zero total magnetization and a non-zero spin-glass order parameter. This will be discussed
later, but, at the level of ‘hand-waving arguments’, one can propose a possible interpretation
for the presence of a spin-glass phase. The point is that as one lowers the temperature
(from the paramagnetic phase side) and the ferromagnetic islands become close and strongly
interacting, there need not be the appearance of a unique infinite (percolating) ferromagnetic
island. The existence of the spin-glass solution of the saddle-point equations in the considered
disordered Ising ferromagnet requires that a large number of effectively independent spanning
ferromagnetic clusters appear in the system. Just below the transition each of the clusters is
characterized by non-zero value of its own global magnetization (so that within the cluster
the spins are effectively ‘frozen’), but the sign of these magnetizations remains random from
cluster to cluster. This situation manifests itself as the spin-glass state with ‘frozen’ spins and
no (averaged-over clusters) global magnetization. Finally, when the temperature is further
decreased, the effective interactions among these spanning clusters become strong enough for
the system to eventually make a ‘jump’ (via a first-order transition) into the ferromagnetic state.
In other words, the ferromagnetic phase sets in due to a collective locking of the orientations
of the clusters magnetizations in the same direction. It is easy to understand that this transition
must be first order. Indeed, since at the point of the spin-glass to ferromagnetic transition
the absolute value of the (randomly directed) magnetizations of the spanning ferromagnetic
clusters in the spin-glass phase is already finite, the value of the global ferromagnetic order
parameter resulting from the locking of the various orientations in the same direction is itself
finite.

In the next section we present the general formalism in terms of the standard replica
approach and of the Gaussian variational approximation [9, 10] as applied to the random
temperature model. In section 3 we derive all the solutions of the corresponding saddle-point
equations, solutions that describe the different ‘ground states’ that can exist in the model. It
is shown that the spin-glass solution discussed above can exist only in dimensions D � 4.
Since the conclusions of the present study are, to a large extent, only of a qualitative nature,
we focus on the system in dimensionD = 4 (the generalization of the results for dimensions
D = (4 − ε) is given in appendix C). We obtain the solutions for the paramagnetic, (replica-
symmetric) spin-glass and ferromagnetic states, and we derive the temperature regions over
which these phases are stable as well as the nature of the phase transitions separating these
phases. In section 4 the singularity in the spin-glass-type 4-spin correlation function and in
the corresponding susceptibility at the spin-glass phase transition is derived. (In appendix A
we give the formal proof that, in the framework of the present formalism, no replica symmetry
breaking solutions, either continuous or step-like, can exist in the spin-glass state.) Finally, in
section 5 we discuss the validity of the Gaussian variational method; we stress, in particular,
that the present approach can only be reliable for finite values of the parameter describing the
disorder strength. We also suggest a possible scenario for the existence of an intermediate
spin-glass phase.

2. General formalism

In this paper we study the disordered (random temperature)D-dimensional Ising ferromagnet
which can be described in the continuum by the following Ginsburg–Landau Hamiltonian:

H [φ(x); δτ (x)] =
∫

dDx
[

1
2 (∇φ(x))2 + 1

2 (τ − δτ (x))φ2(x) + 1
4gφ

4(x)
]
. (2.1)
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Here, τ ≡ (T − Tc)/Tc � 1 is the reduced temperature, and the quenched disorder is
described by random spatial fluctuations of the local transition temperature δτ (x) whose
probability distribution is taken to be symmetric and Gaussian:

P [δτ ] = p0 exp

(
− 1

4u

∫
dDx(δτ(x))2

)
(2.2)

where u is the parameter which describes the strength of the disorder and p0 is an irrelevant
normalization constant.

In terms of the standard replica method, the averaged (over quenched disorder) free energy
is calculated from an annealed average involving n copies of the same system:

F = −(lnZ) = − lim
n→0

1

n
ln [Zn] (2.3)

where (. . .) denotes the averaging over the random function δτ (x) with the probability
distribution (2.2), and

Zn ≡
∫

Dδτ (x)P [δτ ]

[∫
Dφ(x) exp(−H [φ(x); τ (x)])

]n
(2.4)

is the replica partition function. Simple Gaussian integration over δτ (x) in equation (2.4)
yields

Zn =
n∏
a=1

[∫
Dφa(x)

]
exp
(−H(n)[φa(x)]

)
(2.5)

where

H(n)[φa(x)] =
∫

dDx

[
1

2

n∑
a=1

(∇φa)2 +
1

2
τ

n∑
a=1

φ2
a +

1

4

n∑
a,b=1

gabφ
2
aφ

2
b

]
(2.6)

is the replica Hamiltonian and

gab = gδab − u. (2.7)

To take into account the possibility of ferromagnetic ordering in the system we explicitly
introduce the ferromagnetic order parameter m = 〈φ〉 by redefining the fields as follows:

φa(x) = m + ϕa(x) (2.8)

where the new fields ϕa(x) describe the spatial fluctuations with zero mean. By substituting
(2.8) into equation (2.6) for the replica Hamiltonian, one finds

H(n)[ϕa(x);m] = V n

(
1

2
τm2 +

1

4
gm4

)
+
∫

dDx

[
1

2

n∑
a=1

(∇ϕa)2 +
1

2
τ

n∑
a=1

ϕ2
a

+
1

4

n∑
a,b=1

gabϕ
2
aϕ

2
b +

1

2
gm2

n∑
a=1

ϕ2
a +m2

n∑
a,b=1

gabϕaϕb + τm
n∑
a=1

ϕa

+ m

n∑
a,b=1

gabϕaϕ
2
b +m3g

n∑
a=1

ϕa

]
(2.9)

where V is the volume of the system. Note that the limit n → 0, that must formally be taken
in the final results, allows us to omit all terms of order n2 in the above expression (and in
further calculations).
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The idea of the Gaussian variational approach is to approximate the fluctuations of the
fields ϕa(x) in the above equation (2.9) by the Gaussian trial Hamiltonian

H(n)
g [ϕa|G] = V

2

∫
|p|<1

dDp

(2π)D

n∑
a,b=1

G−1
ab (p)ϕa(p)ϕb(−p) (2.10)

where the correlation functions Gab(p) = 〈ϕa(p)ϕb(−p)〉 are considered as variational
parameters.

The replica partition function can be represented as follows:

Zn =
n∏
a=1

[∫
Dϕa(x)

]
exp
{−H(n)

g [ϕa(x)] − (H(n)[ϕa(x);m] −H(n)
g [ϕa(x)]

)}
(2.11)

and in the first-order cumulant approximation in the difference
(
H(n) −H(n)

g

)
one finds

Zn � exp

[
−1

2
V

∫
|p|<1

dDp

(2π)D
Tr ln(G−1(p))− 〈(H(n) −H(n)

g

)〉
g

]
≡ exp(−nVf [m; G])

(2.12)

where 〈(. . .)〉g denotes the averaging with the Gaussian weight, equation (2.10); f [m; G] is
the density of free energy that depends on the order parameter m and on the trial correlation
functionsGab(p):

f [m; G] = 1

2n

∫
|p|<1

dDp

(2π)D
Tr ln(G−1(p)) +

1

nV

〈(
H(n) −H(n)

g

)〉
g
. (2.13)

Since the above free energy density is an upper bound of the exact replica free energy density,
the variational parameters m andGab(p) can be determined by minimization of equation (2.13).
One should however keep in mind the oddities related to the limit n → 0, in particular the
fact that the number of parameters can turn negative for n < 1 (see section 3.3)2. Inserting
equations (2.9) and (2.10) into equation (2.13) leads to

f [m; G] = − 1

2n

∫
|p|<1

dDp

(2π)D
Tr ln(G(p)) +

1

2
τm2 +

1

4
gm4

+
1

2n

∫
|p|<1

dDp

(2π)D
(p2 + τ )

n∑
a=1

〈ϕa(p)ϕa(−p)〉g +
1

4n

n∑
a,b=1

gab
〈
ϕ2
a(x)ϕ

2
b(x)

〉
g

+
1

2n
gm2

n∑
a=1

〈
ϕ2
a(x)

〉
g

+
1

n
m2

n∑
a,b=1

gab〈ϕa(x)ϕb(x)〉g. (2.14)

Above and in what follows we omit irrelevant constant terms. For the Gaussian averages of
the fluctuating fields, one has

〈ϕa(x)ϕb(x)〉g =
∫

|p|<1

dDp

(2π)D
Gab(p) ≡ [Gab] (2.15)

〈
ϕ2
a(x)

〉
g

=
∫

|p|<1

dDp

(2π)D
Gaa(p) ≡ [Gaa] (2.16)

〈
ϕ2
a(x)ϕ

2
b(x)

〉
g

= 〈ϕ2
a(x)

〉
g

〈
ϕ2
b(x)

〉
g

+ 2〈ϕa(x)ϕb(x)〉2
g ≡ [Gaa][Gbb] + 2[Gab]

2 (2.17)
2 As noted by Mezard and Parisi in their replica field theory for random manifolds [10], the Gaussian variational
method becomes exact when the number N of components of the fields φa goes to infinity (here, N = 1). To apply
this remark to the present case, one must generalize the non-Gaussian term appearing in the replica Hamiltonian,
equation (2.6), to 1

12

∑n
ab=1(gab/N)

[
φ2
aφ

2
b + 2(φa · φb)

2
]
. Note that with this latter term the Hamiltonian does not

correspond to the replica-space formulation of the random temperature O(N)model.
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where we have introduced the notation∫
|p|<1

dDp

(2π)D
A(p) ≡ [A] (2.18)

for an arbitrary function A(p). Taking into account that the diagonal elements of the matrix
G must be independent of the replica index, Gaa ≡ G̃, we find the following expression for
the free energy density:

f [m; G] = − 1

2n
Tr [ln(G)] +

1

2
τm2 +

1

4
gm4 +

1

2
[(p2 + τ )G̃] +

1

4
g[G̃]2 +

1

2
(g − u)[G̃]2

+
1

2n

n∑
a =b

gab[Gab]2 +
1

2
gm2[G̃] +m2(g − u)[G̃] +

1

n
m2

n∑
a =b

gab[Gab]. (2.19)

The correlation functions Gab(p) and the order parameter m are then determined by the
following saddle-point equations:

δf

δG̃(p)
= 0 (2.20)

δf

δGab(p)
= 0 (a = b) (2.21)

δf

δm
= 0. (2.22)

By using the explicit expression of the free energy density, equation (2.19), one obtains

G−1
ab (p) = (p2 + τ )δab + g[G̃]δab + 2gab[Gab] + gm2δab + 2m2gab (2.23)

m


τ + gm2 + (3g − 2u)[G̃] +

2

n

n∑
a =b

gab[Gab]


 = 0. (2.24)

According to equation (2.23) one finds that the trial correlation function has the following
structure:

G−1
ab (p) = (p2 + τ )δab + µab (2.25)

where the matrix µab is defined by

µab = (g[G̃] + gm2)δab + 2gab[Gab] + 2gabm2. (2.26)

For finding explicit solutions of this equation one needs to make an assumption about
the replica structure of the matrix µab. In what follows we assume that this matrix is replica
symmetric; in appendix A we give the formal proof that equation (2.26) has no solutions with
the Parisi replica symmetry breaking structure for the matrix µab. The replica symmetric
ansatz implies that the matrix µab is defined by only two parameters,

µab = (µ̃ + µ)δab − µ =
{
µ̃ a = b

−µ a = b.
(2.27)

For the corresponding replica symmetric correlation function, defined by equation (2.25), we
find

Gab(p; λ,µ) = 1

p2 + λ
δab +

µ

(p2 + λ)2
(2.28)

≡ Gc(p; λ)δab + µ(Gc(p; λ))2
where the so-called ‘connected’ part of the correlation function is given by

Gc(p; λ) = 1

p2 + λ
(2.29)
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and instead of µ̃ (defined in equation (2.27)) we have introduced a physically motivated ‘mass’
parameter λ = τ + µ̃ + µ that determines the value of the correlation length (Rc ∼ λ−1/2 in
the present approximation).

Note that according to equation (2.28) the parameter µ is related to the value of the
spin-glass Edwards–Anderson (EA) order parameter, since

q = 〈ϕ〉2 = lim
n→0

〈ϕa(x)ϕb(x)〉|(a =b) = µ
[
G2
c

]
. (2.30)

Thus, to be physically meaningful µ must be non-negative.
By using equations (2.27), (2.28) and (2.7), the corresponding saddle-point equations for

the parametersm, λ and µ can be obtained from equations (2.26) and (2.24) as

λ = τ + µ + (3g − 2u)
(
[Gc] + µ

[
G2
c

])
+ (3g − 2u)m2 (2.31)

µ = 2uµ
[
G2
c

]
+ 2um2 (2.32)

m
(
τ + gm2 + (3g − 2u)

(
[Gc] + µ

[
G2
c

])
+ 2uµ

[
G2
c

]) = 0. (2.33)

The resulting free energy density is then given by

f (m, λ,µ) = − 1
2 [ln(Gc)] + 1

2 (τ − λ)
(
[Gc] + µ

[
G2
c

])
+ 1

4 (3g − 2u)
(
[Gc] + µ

[
G2
c

])2
+ 1

2uµ
2
[
G2
c

]
+ 1

2 (3g − 2u)m2
(
[Gc] + µ

[
G2
c

])
+ uµm2

[
G2
c

]
+ 1

2τm
2 + 1

4gm
4. (2.34)

3. Phase diagram in D = 4

In this section we study all possible solutions of the saddle-point equations (2.31)–(2.33). As
usual, it is assumed that the non-Gaussian coupling parameters g and u of the original replica
Hamiltonian, equation (2.6), are small: g � 1, u � 1. Besides, we consider u ∼ g, which
qualitatively corresponds to the situation of ‘finite disorder strength’ since then the parameter
u describing the disorder strength is of the same order as the coupling parameter g of the pure
system. As will be discussed in section 5, the analysis of the validity of the present (first-order)
Gaussian approximation shows that it may give reasonable results provided the ratio u/g stays
within certain numerical bounds (see section 5). For the moment, however, it is sufficient
to assume that u < 3

2g (see below). Finally, since we are only interested in the large-scale
(continuous limit) properties of the system we consider the region of parameter space where
the mass λ of the connected correlation function is also small: λ � 1.

To simplify the algebra and for a qualitative presentation of the phase diagram, it is
convenient to consider first the solutions of the saddle-point equations in dimension D = 4.
Generalization of the results for dimensions below four will be given in section 5 (it will also
be shown that for D > 4 the spin-glass solution does not exist).

For D = 4 and for λ � 1 one has

[Gc] =
∫

|p|<1

d4p

(2π)4
1

p2 + λ
� C

(
1 − λ ln

(
1

λ

))
(3.1)

[
G2
c

] =
∫

|p|<1

d4p

(2π)4
1

(p2 + λ)2
� C

(
ln

(
1

λ

)
− 1

)
(3.2)

where C = 1/16π2.
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3.1. Paramagnetic solution

In the paramagnetic state, the ferromagnetic and spin-glass order parameters are both zero
(m = µ = 0) and there is only one saddle-point equation (2.31) for the mass parameter λ,

λ = τ + (3g − 2u)[Gc]. (3.3)

Using equation (3.1) leads to the following equation:

λ + C(3g − 2u)λ ln

(
1

λ

)
= τ + C(3g − 2u) (3.4)

which provides the dependence λ = λ(τ). The solution of this equation makes physical sense
only for λ � 0, and therefore this condition defines the limit of existence of the paramagnetic
phase. Provided 3g > 2u the above equation yields positive (physical) solutions for λ(τ) only
for temperatures such that

τ � τc = −C(3g − 2u). (3.5)

If one finds that the ferromagnetic solution appears just below τc, then the temperature τ = τc
would correspond to the paramagnetic–ferromagnetic phase transition point. However, it will
be shown below that this is not the case. In fact, below a certain temperature τsg > τc a
spin-glass solution (with µ = 0) appears, and at temperatures τ < τsg it is the spin-glass state
that turns out to be stable, while the paramagnetic state becomes unstable.

3.2. Spin-glass solution

The spin-glass state is defined by two saddle-point equations (2.31) and (2.32):

λ = τ + µ + (3g − 2u)
(
[Gc] + µ

[
G2
c

])
(3.6)

µ = 2uµ
[
G2
c

]
(3.7)

which define two non-zero (positive) order parameters: µ(τ) and λ(τ). From the last equation
one immediately finds that forµ = 0 the mass parameter λ becomes temperature independent,
λ = λo, and the value of λo is defined by the condition[

G2
c

] = 1

2u
. (3.8)

Correspondingly, equation (3.6) yields the following solution for the spin-glass order
parameter:

µ(τ) = 2u

3g
(λo − (3g − 2u)[Gc] − τ ). (3.9)

By making use of equations (3.1) and (3.2) one can find the solutions for λo and µ(τ)
explicitly:

λo = exp

(
− 1

2Cu
− 1

)
(3.10)

µ(τ) = 2u

3g
(τsg − τ ) (3.11)

where

τsg = λo − (3g − 2u)[Gc] = τc +

(
3g

2u
+ C(3g − 2u)

)
λo > τc (3.12)

and τc is the putative paramagnetic critical point discussed above. The solution for µ > 0
appears (i.e. becomes physical) only for τ < τsg, and therefore the point τsg can be associated
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with the spin-glass phase transition temperature. Note that according to equations (3.12) and
(3.3), the value of λ in the paramagnetic phase at τ = τsg is equal to λo (for τ > τsg, λ(τ) > λo
and for τ < τsg, λ(τ) < λo). Since µ(τsg) = 0 whether one comes from the paramagnetic or
the spin-glass phase, the transition into the spin-glass phase is clearly continuous.

In appendix B we present a detailed study of the stability of the spin-glass and the
paramagnetic solutions obtained above. It is shown there that for τ > τsg the only stable state
of the system is paramagnetic, while for τ < τsg the paramagnetic solution becomes unstable
and the stable state of the system is the spin-glass phase.

3.3. Ferromagnetic solution

We finally consider the ferromagnetic solution of the saddle-point equations (2.31)–(2.33) in
which all three parameters λ, µ and m are non-zero. After some simple algebra we find

m2 = 1

2g
λ (3.13)

µ = u

g

λ

1 − 2u[G2]
(3.14)

where the parameter λ(τ) is obtained from the following equation:

λ = τ + (3g − 2u)[G] +
3

2

λ

1 − 2u[G2]
. (3.15)

Substituting equations (3.1) and (3.2) into the above equation gives

λ

[
3g

2u
+ C(3g − 2u)− C(3g − 2u)ln

λ

λo
− 3

4Cu

1

ln λ
λo

]
= τ + C(3g − 2u). (3.16)

A simple analysis shows that upon lowering the temperature τ a solution of this equation
appears for the first time below a temperature τ∗. This solution has a finite (non-zero) value λ∗
at τ = τ∗, which indicates that the phase transition into the ferromagnetic state is first order.
To leading order in g � 1 and in u � 1 (and for g/u ∼ 1) one finds

τ∗ � −C(3g − 2u)− 3

4Cu
exp

(
− 1

2Cu

)
= τc − 3e

4Cu
λo < τc (3.17)

and

λ(τ = τ∗) ≡ λ∗ � exp

(
− 1

2Cu

)
= eλo. (3.18)

By inserting the above value into equations (3.13) and (3.14), we find the corresponding values
of the ferromagnetic and the spin-glass order parameters:

m2
∗ = 1

2g
λ∗ � 1

2g
exp

(
− 1

2Cu

)
(3.19)

µ∗ � e

2Cg
λo = 1

2Cg
exp

(
− 1

2Cu

)
. (3.20)

Straightforward calculations similar to those of section 3.3 show that the ferromagnetic solution
defined by equations (3.13)–(3.15) is stable at all temperatures τ < τ∗. Thus, below τ∗ both the
spin-glass and the ferromagnetic solutions are (locally) stable (this is the standard situation for
first-order phase transitions). To determine which of these two states is the global minimum
of the free energy at a given temperature, we have to compare the corresponding values of
their free energies.
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3.4. First-order phase transition between spin-glass and ferromagnetic states

Substituting the spin-glass solution, equations (3.8)–(3.12), into equation (2.34) provides the
value of the free energy density of the spin-glass state (in the leading order in g, u � 1):

fsg(t) � f0(τ ) +
1

8
λ2
o − Cu

3g
λo(τ − τc) (3.21)

where

f0(τ ) = u

6g
C(3g − 2u) +

u

3g
τ − 1

12
τ 2. (3.22)

On the other hand, for the ferromagnetic solution, equations (3.13)–(3.16), one gets

ff (τ ) � f0(τ ) +
λ

6g
(1 + 2Cu ln λ)(τ − τc) +

C2u(3g − 2u)

6g
λ2 ln2 λ

+C

(
(3g − 2u

6g
− 1

4

)
λ2 ln λ +

1

24g
λ2 − 1

8
λ2 (3.23)

where the value of λ(τ) is given by equation (3.16). Let us redefine

λ(τ) ≡ λox(τ ) (3.24)

τ − τc ≡ −λot (3.25)

By making the above change of variables in the saddle-point equation (3.16), one obtains

x

[
3g

2u
+ C(3g − 2u)(1 − ln x)− 3

4Cu

1

ln x

]
= t . (3.26)

Therefore, to leading order in u, g � 1 the value of the parameter x as a function of the
reduced temperature t is defined by the following equation:

3

4Cu

x

ln x
� t . (3.27)

Assuming that at the point of the phase transition, i.e., when ff = fsg, the value of the
parameter x(t) is of the order one, we find for the difference of the free energies, equations
(3.21) and (3.23) (in the leading order in u, g � 1 and λo � 1),

ff − fsg � Cu

3g
λ2
ot (1 − x − x ln x) +

1

8g
λ2
ox

2. (3.28)

Thus, the transition point (ff − fsg = 0) is defined by the following equation:

C

3
ut (1 − x − x ln x) = 1

8
x2. (3.29)

Combining equations (3.27) and (3.29), we finally derive the equation for the parameter x at
the phase transition point,

3

2
x − x ln x = 1. (3.30)

This equation has a unique solution x = xf ∼ 1 (xf > 1). Substituting xf into
equations (3.27) and (3.25) one obtains the temperature of the (first-order) phase transition
between the spin-glass and the ferromagnetic phases:

τf = τc − 3

4Cu

xf

ln xf
λo (3.31)

which is less than τ∗.
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4. Singularities at the spin-glass phase transition

Within the Gaussian variational approximation the (connected) correlation functions can
be obtained by adding source terms to the replica Hamiltonian, equation (2.6), and by
approximating the free-energy functional to the first-order cumulant as in equation (2.12).
This latter then generates the (connected) correlation functions that are obtained by
functional differentiation with respect to the source terms. By introducing source terms
linearly coupled to the fields φa(x), one derives the usual correlation functions, whose
expression (for the two-point functions) coincides with that given in section 2. To study
the singularity at the spin-glass transition it is more convenient to introduce source terms
linearly coupled to the composite operators 1

2φa(x)φb(x). This leads us to the following
replica Hamiltonian:

H(n)[φa(x);∆(x)] = H(n)[φa(x); 0] − 1

2

∫
dDx

n∑
a,b=1

+ab(x)φa(x)φb(x) (4.1)

where H(n)[φa(x); 0] is given by equation (2.6) and, because we are ultimately interested in
the replica-symmetric solution, the source term is taken as

+ab(x) = (+̃(x) ++(x))δab −+(x). (4.2)

Since we study here only the paramagnetic and the spin-glass phases, we can set m = 0.
A Gaussian trial Hamiltonian is chosen as before, but the presence of space-dependent source
terms breaks the translational invariance and requires trial Green functions that depend on two
space points:

H(n)
g [φa|G] = 1

2

∫ ∫
dDx dDx ′

n∑
ab=1

φa(x)[G−1]xx
′

ab φb(x
′) (4.3)

where

[G−1]xx
′

ab =
[(

∂2

∂x∂x ′ + τ

)
δab + µab(x)

]
δ(x − x ′) (4.4)

which simply generalizes equation (2.25). For the replica-symmetric solution, the variational
parameter µab(x) can be written as

µab(x) = (µ̃(x) + µ(x))δab − µ(x) (4.5)

whereas the Green functions can be written as

Gxx
′

ab = Gxx
′

c δab +Gxx
′

d (4.6)

where Gc and Gd represent, as usual in the presence of quenched disorder, the ‘connected’
and ‘disconnected’ parts respectively and can be expressed in terms of τ , µ̃(x) and µ(x) by
inverting equation (4.4).

One can then follow the procedure used in section 2: the first-order cumulant
approximation in the deviation

(
H(n) − H(n)

g

)
provides an upper bound for the free-energy

functional, and minimizing with respect to the trial Green function elements leads to saddle-
point equations that in the limit n → 0 for a replica-symmetric scheme reduce to

µ̃(x) + +̃(x) = (3g − 2u)
(
Gxxc +Gxxd

)
(4.7)

µ(x) ++(x) = 2uGxxd . (4.8)

When considered at the saddle-point characterized by the above equations, the variational
free energy F [+̃(x),+(x)] can be used as the generating functional for the correlation
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functions of the composite operators 1
2φa(x)φb(x). More precisely, one has

δF

δ+̃(x)
= −1

2
lim
n→0

〈φa(x)φa(x)〉 = −1

2

(
Gxxc +Gxxd

)
(4.9)

δF

δ+(x)
= 1

2
lim
n→0

〈φa(x)φb(x)〉
∣∣∣∣
(a =b)

= 1

2
Gxxd . (4.10)

In the limit +̃ = + = 0 the above equations reduce to the expressions already given in
section 2, in particular equation (4.10) reduces to equation (2.30) for the spin-glass order
parameter: indeed, in the absence of source terms translational invariance is recovered and
Gxxd = [Gd(p)] = µ

[
G2
c(p)

]
.

The second functional derivatives ofF provide the wanted two-point, four-field correlation
functions, namely

δ2F

δ+̃(x)δ+̃(x ′)
= −1

4
lim
n→0

1

n

n∑
a,b=1

〈
φ2
a(x)φ

2
b(x

′)
〉
c

(4.11)

δ2F

δ+̃(x)δ+(x ′)
= 1

4
lim
n→0

1

n

n∑
a,b=1

〈
φ2
a(x)

(
n∑
c =b

φc(x
′)φb(x ′)

)〉
c

(4.12)

δ2F

δ+(x)δ+(x ′)
= −1

4
lim
n→0

1

n

n∑
a,b=1

〈(
n∑
c =a

φa(x)φc(x)

)(
n∑
d =b

φb(x
′)φd(x ′)

)〉
c

(4.13)

where 〈(. . .)〉c denotes a cumulant average for the composite operators.
We are interested in the case +̃ = + = 0, in which translational invariance is recovered

and the two-point functions are diagonal in momentum space. We then define the 2 × 2
momentum-dependent susceptibility matrix χ(p) by

χ11(p) = δ2F

δ+̃(−p)δ+̃(p)

∣∣∣∣
+̃=+=0

χ12(p) = δ2F

δ+̃(−p)δ+(p)

∣∣∣∣
+̃=+=0 (4.14)

χ21(p) = δ2F

δ+(−p)δ+̃(p)

∣∣∣∣
+̃=+=0

χ22(p) = δ2F

δ+(−p)δ+(p)
∣∣∣∣
+̃=+=0.

The expression of these p-dependent susceptibilities in terms of the correlation functions
follows from equations (4.11)–(4.13). By combining the above definitions, the expression
of the free-energy functional at the first-order cumulant approximation and the saddle-point
equations, equations (4.7)–(4.8), one obtains after some algebra the following expressions for
the p-dependent susceptibility matrix:

χ(p) = 1

2

(
1

(3g−2u) 0

0 1
2u

)(
M−1(p)− I

)
(4.15)

where I is the identity matrix and the p-dependent matrix M(p) is defined by

M(p) =
(

1 + (3g − 2u)(I (p) + 2µJ(p)) 2(3g − 2u)µJ (p)
4uµJ (p) 1 − 2u(I (p) − 2µJ(p))

)
(4.16)

with

I (p) =
∫

|p|<1

dDk

(2π)D
1

(k2 + λ)((k + p)2 + λ)
(4.17)

J (p) = −1

2

∂I (p)

∂λ
=
∫

|p|<1

dDk

(2π)D
1

(k2 + λ)2((k + p)2 + λ)
(4.18)
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and λ and µ are given by equations (3.6) and (3.7), respectively. From the above equations
one immediately obtains the expression for the susceptibility matrix in the paramagnetic phase
(where µ = 0):

χ(p) = 1

2

(
− I (p)

1+(3g−2u)I (p) 0

0 I (p)

1−2uI (p)

)
(4.19)

from which one derives that the susceptibility χ22(p = 0) = (∂2F/∂+2)|(+̃=+=0) diverges
when 1 − 2uI (0) = 0, i.e., by using equation (4.17), when

[
G2
c

] = 1/2u. This point is
precisely attained at the transition to the spin-glass state, τ = τsg, where, for D = 4, τsg
is given by equation (3.12) (λ is then equal to λo given by equation (3.10)). To derive the
critical behaviour of χ22(p) when approaching the spin-glass transition from above, we use
the small-p expansion of I(p) in D = 4,

I (p) � C

(
ln

(
1

λ

)
− 1

)
− C2

λ
p2 (4.20)

where C2 > 0. After defining λ = λo + δλ, δλ → 0+, this gives

χ22(p) �
(

λo

8u2C2

)
1

p2 + C
C2
δλ
. (4.21)

Using equations (3.4), (3.10) and (3.12) one finds that when τ → τ +
sg

δλ � 2u

3g
(τ − τsg) (4.22)

which finally leads to

χ22(p) �
(

λo

8u2C2

)
1

p2 + 2uC
3gC2

(τ − τsg)
. (4.23)

Consider now the spin-glass phase (in D = 4). One then has 2uI (0) = 1, λ = λo, and
µ = 2u

3g (τsg − τ ), so that for small p,

I (p) � 1

2u
− C2

λo
p2 (4.24)

J (p) � C

2λo
− C2

2λo
p2. (4.25)

The determinant of the matrix M(p), equation (4.16), can now be expressed in the leading
order as

det(M(p)) � 3gC2

λo

(
p2 +

2uC

3gC2
(τsg − τ )

)
(4.26)

so that when τ → τ−
sg, the susceptibilities χ11(p) stay, χ12(p) are finite, whereas

χ22(p) �
(

λo

8u2C2

)
1

p2 + 2uC
3gC2

(τsg − τ )
. (4.27)

One concludes from the above formulae that the susceptibility associated with the external
field + that couples to the Edwards–Anderson order parameter q, i.e. χ22(p) = δ2F

δ+(−p)δ+(p) ,
diverges when the critical point τsg is approached both from above and below as |τ − τsg|−1

(in D = 4), whereas the associated correlation length (that characterizes the long-distance
behaviour of the two-point composite-field correlation function, equation (4.13)) diverges as
|τ − τsg|−1/2 (in D = 4). The corresponding critical exponents, γ = 1, ν = 1/2, are thus
classical.
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5. Discussion

5.1. Dimensions other than D = 4

The situation in dimensionsD > 4 is quite simple. There, the value of the integral

[
G2
c

] ≡
∫

|p|<1

dDp

(2π)D
1

p2 + λ
(5.1)

remains finite (not diverging) in the limit λ → 0. Therefore, when u � 1 the only solution
of the saddle-point equation (3.7) for the spin-glass order parameter is trivial, µ = 0, so that
there is no spin-glass solution in dimensions D > 4. Thus, one recovers in this case the
standard scenario: upon lowering the temperature, the only phase transition that takes place
in the system is a second-order phase transition from the paramagnetic to the ferromagnetic
phase, and this phase transition is described by the Gaussian theory.

On the other hand, the phase diagram in dimensionsD < 4 turns out to be similar to that
in D = 4 at a qualitative level. The integral, equation (5.1), diverges in the limit λ → 0,
and, therefore, when u � 1 there is always a spin-glass solution µ = 0 of the saddle-point
equation (3.7). Thus, in this case one recovers within the Gaussian variational approximation
a phase diagram similar to that in dimensionD = 4, where the paramagnetic phase is separated
from the ferromagnetic one by an intermediate spin-glass phase.

5.2. Validity of the Gaussian variational approximation

Since the main result of the present study,namely, the existence of a spin-glass phase separating
the paramagnetic and ferromagnetic phases, is in apparent contradiction with the generally
accepted view on the phase diagram of the disordered Ising ferromagnet, the limits of validity
of the Gaussian variational approximation used in this paper require a detailed study.

It is well known that the Gaussian variational approach becomes exact when the number
of spin components tends to infinity (see footnote 2). Otherwise (in particular, the Ising
model is very far from this limit) it is not more than an approximation characterized by certain
bounds of validity (if any), and ignoring these bounds may just lead to wrong conclusions.
The typical example is the pure Ising model in dimensionsD � 4: there, one can easily check
(using equations (2.31) and (2.33) with u = µ = 0) that according to the Gaussian variational
approximation the transition from the paramagnetic to the ferromagnetic phase turns out to be
first order, which is of course incorrect.

The validity of the first-order cumulant approximation in the deviation
(
H(n) − H(n)

g

)
,

described in section 2, can be checked by estimating the contribution from the higher
order terms. In the vicinity of the critical temperature Tc of the (supposed) paramagnetic–
ferromagnetic phase transition, for |T − Tc|/Tc ≡ τ � 1, a systematic account of these
contributions can be done in terms of the usual renormalization group (RG) procedure, which
yields an effective scale dependence of the renormalized non-Gaussian interaction parameters
g and u. In dimensions D = 4, in the so-called one-loop approximation, the scale evolution
of g and u is described by the following well-known RG equations (see e.g. [1, 6, 12]):

d

dξ
g(ξ) = −6C(3g − 4u)g +O(g3; g2u; gu2; u3) (5.2)

d

dξ
u(ξ) = −4C(3g − 4u)u +O(g3; g2u; gu2; u3) (5.3)

where, as usual, C = 1/16π2, and ξ ≡ lnL is the standard RG rescaling parameter which
is equal to the logarithm of the spatial scale. According to these equations one can conclude
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that the renormalization of the parameters g and u remains irrelevant (so that the higher order
terms of the perturbation theory are not important) and that the theory remains Gaussian at
scales bounded by the conditions

6C|3g0 − 4u0|g0ξ � g0 (5.4)
4C|3g0 − 4u0|u0ξ � u0 (5.5)

where g0 ≡ g(ξ = 0) and u0 ≡ u(ξ = 0) are the ‘bare’ (microscopic) values of the parameters
g and u. These two conditions are satisfied when

ξ � ξ∗ ∼ 1

6C|3g0 − 4u0| (5.6)

or, in terms of the spatial scale L, until

L � L∗ ∼ exp

{
1

6C|3g0 − 4u0|
}
. (5.7)

Since the temperature and the spatial scales are related by |τ | ∼ L−2, one finds that the higher
order non-Gaussian corrections remain irrelevant only at temperatures not too close to the
(supposed) paramagnetic–ferromagnetic critical point:

|τ | � τ∗ ∼ exp

{
− 1

3C|3g0 − 4u0|
}
. (5.8)

Note that in the special case u0 = 3
4g0, the higher order terms of the RG equations (5.2),

(5.3) come into play, and instead of the condition (5.8) one eventually obtains: τ∗ ∼
exp
{−(const)/g2

0

}
. Note also that in the case of the pure system, u0 ≡ 0, equation (5.8)

yields the well-known temperature scale τ∗ ∼ exp
{−16π2/9g0

}
, such that when |τ | � τ∗ the

behaviour of the system is effectively Gaussian, while in the close vicinity of the critical point,
for |τ | � τ∗, the non-Gaussian fluctuations become dominant; in particular, this shows that the
first-order Gaussian cumulant approximation breaks down for |τ | � τ∗ (it is at this temperature
scale that this approximation wrongly predicts the first-order nature of the phase transition).

According to the calculations of section 3, the spin-glass phase separating the
paramagnetic and ferromagnetic phases exists in a temperature interval of the order of
λo � exp

{− 1
2uC

}
aroundTc (where Tc is the critical temperature of the putative paramagnetic–

ferromagnetic phase transition). Since the approximation used in the present approach is valid
only outside the temperature given by equation (5.8), we need this ‘dangerous’ temperature
interval to be well inside the spin-glass phase, i.e.,

exp

{
− 1

3C|3g0 − 4u0|
}

� exp

{
− 1

2uC

}
. (5.9)

If the above condition is satisfied, the spin-glass state (obtained in terms of the present
Gaussian variational approximation) would set in when lowering the temperature well before
the non-Gaussian critical fluctuations of the fields φa(x) (given by the higher order terms of
the perturbation theory) become relevant.

It should be stressed, however, that this does not guarantee that the critical behaviour
at the spin-glass phase transition itself is correctly described by the Gaussian theory (as it is
derived in section 4), since for an adequate description of this phase transition one needs to
take into account critical fluctuations of the spin-glass order parameter qab(x) = φa(x)φb(x)

and not just those of the fields φa(x). Actually, although less likely, one cannot exclude that
the fluctuations of the composite field qab(x)will even destroy the spin-glass phase itself. This
question is left for future investigations.

In addition, when lowering the temperature further, the transition point from the spin-
glass to the ferromagnetic phase is also separated from Tc by an interval of the order of λo.
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Therefore, provided the condition (5.9) is satisfied, one can conclude that the first-order nature
of this phase transition corresponds indeed to the proper physical phenomenon, and is not just
an artefact of the method used.

Since all the calculations of the present study are done for g � 1 and u � 1, one can
easily see that the condition (5.9) is satisfied provided

10

9
<
g0

u0
<

14

9
(5.10)

so that the parameter u describing the disorder strength must be of the same order as the
interaction parameter g of the pure system. It is in this sense that we characterize such system
as having a finite strength of disorder (although both u and g are kept small).

Thus, we have found at least a limited region of the parameters, defined by equation (5.10),
where the approximation used in this paper appears to be reasonable and for which an
intermediate spin-glass phase could exist. Presumably, it could also exist in a wider region (in
particular for large values of u compared to g), where, however, it cannot be studied by the
present method. Unfortunately, in the framework of the present investigation we cannot answer
the question whether the (exponentially narrow) intermediate spin-glass phase continues to
exist in the limit u → 0 or there exists a critical value uc such that the spin-glass phase appears
only for u > uc.

At a qualitative level, the situation in dimensionsD = 4 − ε(ε � 1) turns out to be similar
to that inD = 4 (see appendix C): we find again the same restriction on the parameters g and
u as in equation (5.10), but in addition we obtain that the value of the parameter ε = 4 −D

must remain small. This shows that on the one hand the results obtained in the present study
are not unique to the dimension D = 4 and can be continued down to lower dimensions; on
the other hand, due to the restriction ε � 1, we cannot guarantee that they would survive down
to the physical dimensionD = 3 (where, for sure, the present approximation does not work).

5.3. Conclusion

The existence of a spin-glass phase in a ‘dilute ferromagnet’ is a priori a puzzle [4, 8]. In
the absence of competing antiferromagnetic interactions and of the associated frustration,
how can the system ever be found in a state with frozen magnetizations but without global
magnetization?3 Indeed, for a spin-glass phase as predicted by the Gaussian variational
approximation to exist in a disordered Ising model, one must have

(i) non-zero ‘frozen’ local magnetizations in an extensive part of the volume, so that the
Edwards–Anderson order parameter is non-zero;

(ii) a total magnetization equals to zero.

Truly frozen local magnetizations require symmetry breaking and can exist only on a
percolating cluster that diverges in the thermodynamic limit. IfL is the linear size of the whole
system (ultimately, L → ∞), the size of clusters with non-zero magnetization must scale as
Ld with D � d > 1 (for Ising spins). On the other hand, on each cluster the magnetization
can be either positive or negative. One possible scenario to explain the occurrence of the
spin-glass phase with zero total magnetization is thus as follows.

We envisage that there exists a global temperature at which a large number M of
percolating clusters of fractal dimension d < D acquire a non-zero magnetization (when
L → ∞), while being essentially decoupled from each other. These clusters are formed from
3 The fact that at and around the spin-glass transition, the 4-spin spin-glass susceptibility has to be larger than the
square of the 2-spin ferromagnetic susceptibility may not be as severe a problem: the presence of a large number of
‘ferromagnetic islands’ and clusters invalidates the inequalities obtained via a perturbative analysis [8].
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the ‘islands’ characterized by a predominantly negative value of the local temperature (τ − δτ )
and are separated from each other by regions of high local temperature. In zero external
magnetic field4 the sign of the magnetization on each cluster is then randomly determined
(and subsequently frozen when the temperature is decreased). SinceM is large, there will be
essentially (up to a relative factor of the order 1/

√
M) as many positive as negative clusters.

Therefore, if M scales with L as M ∼ LD−d (and d < D), the total magnetization, averaged
over all clusters, is zero whereas the Edwards–Anderson order parameter is non-zero: the
system is then in a spin-glass phase. It must be stressed that the appearance of the large
number of percolating clusters cannot be envisaged as a purely geometric, disorder-controlled
phenomenon. Thermal fluctuations come into play for helping the islands to coalesce. This is
necessary in order to haveM scale as LD−d since in usual percolation the number of incipient
spanning clusters at the percolation threshold can be larger but inD < 6 does not diverge with
L as a power law [13].

To settle the question of the existence of a spin-glass phase in the random temperature Ising
ferromagnet, especially in D = 3, further investigation is clearly needed. A potential line of
investigation is a renormalization group analysis that treats on equal footing the primary fields
φa(x) and the composite fields φa(x)φb(x) that are needed to describe the spin-glass phase.
This would clarify the problem of the upper critical dimension of the paramagnetic to spin-glass
phase transition (recall that in our studyD = 4 is the critical dimension above which the spin-
glass phase ceases to exist, it is not necessarily the upper critical dimension). An interesting
problem that is worth pursuing is the connection to the phase behaviour of the random field
Ising model. It has been suggested [14, 15] that this latter system possesses an intermediate
spin-glass-like phase, and that a potential source for the presence of this phase is the generation
in higher orders of perturbation theory of ‘attractive’ terms of the type uφ2

aφ
2
b [15], i.e., terms

similar to those present in the random temperature replica Hamiltonian. Although the kind
of symmetry breaking leading to the spin-glass phase in the random temperature Ising model
is not possible in the random field models (within the replica formulation, random fields
generate a nonzero field + that is linearly coupled to the composite operator φa(x)φb(x)), a
comparative study may prove fruitful. Finally, one should stress that absence of the replica
symmetry breaking found within the present approach could turn out to be an artefact of the
Gaussian variational approximation because the corresponding saddle-point equations (see
appendix A) are in fact rather ‘fragile’ with respect to the introduction of higher order terms
of the perturbation theory.
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Appendix A

Consider again the saddle-point equations (2.26) in the spin-glass state (m = 0):

µab = g[G̃]δab + 2gab[Gab] (A.1)

where

G−1
ab (p) = (p2 + τ )δab + µab (A.2)

and G̃(p) ≡ Ga=b(p).
4 If one imposes a small external magnetic field, all cluster magnetizations will have the same sign, i.e. the sign of
the external field. Then, in the limit of vanishingly small field, the overall spontaneous magnetization does not vanish.
The situation, however, is different if one considers from the beginning the case without any applied magnetic field.
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A.1. Continuous RSB

In the case of a Parisi-like continuous RSB in the limit n → 0 the matrices Gab and µab are
parametrized by their diagonal elements G̃, µ̃ and by off-diagonal functionsG(p; x), µ(p; x)
defined on the interval x ∈ [0, 1] [11]:

Gab(p) → (G̃(p);G(p; x)) (A.3)

µab(p) → (µ̃(p);µ(p; x)). (A.4)

By using the Parisi algebra for inverting hierarchical matrices [10] one derives from
equation (A.2)

G(p; x) = − µ(0)

(p2 + τ + µ̃− µ̄)2
−
∫ x

0
dy

µ′(y)
(p2 + λ(y))2

(A.5)

where

λ(y) ≡ τ + µ̃− µ̄− yµ(y) +
∫ y

0
dzµ(z) (A.6)

µ̄ ≡
∫ 1

0
dx µ(x) (A.7)

µ(0) ≡ µ(x = 0). (A.8)

Substituting equation (A.5) into equation (A.1) (for a = b), we find the following equation
for the unknown function µ(x):

µ(x) = 2u
∫

|p|<1

dDp

(2π)D
µ(0)

(p2 + τ + µ̃− µ̄)2
+ 2u

∫
|p|<1

dDp

(2π)D

∫ x

0
dy

µ′(y)
(p2 + λ(y))2

. (A.9)

Differentiating both sides of this equation with respect to x then leads to

µ′(x)
[

2u
∫

|p|<1

dDp

(2π)D
1

(p2 + λ(x))2
− 1

]
= 0. (A.10)

Thus, either one has µ′(x) = 0, i.e., µ(x) = const (independent of x), or

2u
∫

|p|<1

dDp

(2π)D
1

(p2 + λ(x))2
− 1 = 0 (A.11)

which also yieldsµ(x) = const. In both cases the solution is replica-symmetric (or step-like).
This proves that the saddle-point equation (A.1) cannot have solutions with continuous RSB.

Nevertheless, the above proof does not exclude the possibility of other types of solutions
with step-like RSB.

A.2. One-step RSB

We consider now a one-step RSB ansatz for the replica matrix Gab(p): it is defined in terms
of one diagonal element g̃(p), two off-diagonal elements g1(p) and g0(p) and the coordinate
of the step xo:

Gab(p) =




g̃(p) for a = b

g1(p) for I

(
a

xo

)
= I

(
b

xo

)

g0(p) for I

(
a

xo

)
= I

(
b

xo

) (A.12)

where I (x) is the integer valued function which is equal to the smallest integer larger than or
equal to x. Substituting the above equation into the general expression, equation (2.19), with
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m = 0, one finds the following explicit expression for the free energy density:

F [g̃(p); g1(p); g0(p); xo] = − 1

2xo
[ln (g̃ − g1 + xo(g1 − g0))] − 1

2

(
1 − 1

xo

)
[ln (g̃ − g1)]

−
[

g0

2 (g̃ − g1 + xo(g1 − g0))

]
+

1

2
[(p2 + τ )g̃] +

1

4
(3g − 2u)[g̃]2

+
1

2
u(1 − xo)[g1]2 +

1

2
uxo[g0]2 (A.13)

where, as usual, the symbol [(. . .)] denotes the integration over p, see equation (2.18).
Variation of this free energy density with respect to the trial functions g0(p), g1(p) and g̃(p)
yields three saddle-point equations

g0(p)

(g̃(p)− g1(p) + xo(g1(p) − g0(p)))
2 = 2u[g0] (A.14)

g1(p)− g0(p)

(g̃(p)− g1(p)) (g̃(p)− g1(p) + xo(g1(p)− g0(p)))
= 2u[(g1 − g0)] (A.15)

1

g̃(p)− g1(p)
= p2 + τ + (3g − 2u)[g̃] + 2u[g1]. (A.16)

The last equation can be rewritten as follows:

g̃(p)− g1(p) = 1

p2 + λ1
≡ Gc(p; λ1) (A.17)

where the unknown parameter λ1 is defined by

λ1 = τ + (3g − 2u)[Gc] + 3g[g1]. (A.18)

From equations (A.15) and (A.14) one finds

g1(p)− g0(p) = q1Gc(p; λ1)Gc(p; (λ1 − q1xo)) (A.19)

g0(p) = q0G
2
c(p; (λ1 − q1xo)) (A.20)

and the unknown parameters q1 and q0 are defined by

[Gc(λ1)Gc(λ1 − q1xo)] = 1

2u
(A.21)

q0
(
2u
[
G2
c(λ1 − q1xo)

]− 1
) = 0. (A.22)

One more saddle-point equation is obtained by taking the derivative of the free energy,
equation (A.13), with respect to the parameter xo; it reads

[ln Gc(λ1)] − [ln Gc(λ1 − q1xo)] + q1xo[Gc(λ1 − q1xo)] = 1

4u
(q1xo)

2. (A.23)

In this way, we have obtained four equations, (A.18), (A.21)–(A.23), for four unknown
parameters, λ1, q1, q0 and xo.

Introducing the notationλ1−q1xo ≡ λ2 and taking into account the definition of the Green
functionGc, equation (A.17), equations (A.21) and (A.23) can be represented as follows:

[Gc(λ2)] − [Gc(λ1)] − 1

2u
(λ1 − λ2) = 0 (A.24)∫ λ1

λ2

d λ

(
[Gc(λ2)] − [Gc(λ)] − 1

2u
(λ− λ2)

)
= 0. (A.25)

One can easily check that the functionψ(λ) = [Gc(λ2)] − [Gc(λ)] − 1
2u (λ− λ2) has a unique

extremum at λ = λo
(
defined by

[
G2
c(λo)

] = 1
2u

)
. Therefore, the two equations (A.24) and
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(A.25) can be simultaneously satisfied only when λ1 = λ2, which means that q1xo = 0. In
either of the two cases, q1 = 0 or xo = 0, we come back to the replica-symmetric structure of
the trial replica matrixGab.

Quite similar (although more cumbersome) calculations show that there are also no
solutions with more than one step of RSB. Thus, within the present approximation we cannot
have solutions with broken replica symmetry in the spin-glass phase.

Appendix B

The saddle-point solutions for non-ferromagnetic states (m = 0) are defined by two order
parameters λ and µ. The stability of these states is determined by the signs of the eigenvalues
of the corresponding Hessian:

 ∂2f

∂µ2
∂2f

∂µ∂λ

∂2f

∂λ∂µ

∂2f

∂λ2


 . (B.1)

As usual in the replica theory, one should take into account that in the process of taking the
limit n → 0 the minima of the replica free energy (at n > 1) can turn into maxima (at n < 1).
The physically relevant states correspond of course to minima of the replica free energy before
taking the limit n → 0. Around these states all the eigenvalues of the corresponding Hessian
(composed of the second derivatives of the free energy with respect to all replica components
of the order parameters) must be positive. However, if we consider the expression for the
free energy where the limit n → 0 is already taken, the situation can change. In particular,
within the replica-symmetric ansatz for the matrix µab, equation (2.27), the total number of
off-diagonal elements (all equal to −µ) is equal to n(n−1), and this number becomes negative
for n < 1. Therefore, the physically relevant state defined by the free energy in equation (2.34)
(where the limit n → 0 is already taken) must be the maximum with respect to the parameter
µ. On the other hand, the total number of diagonal elements of the matrix µab is equal to
n, and it remains positive in the limit n → 0. Therefore, the physically relevant extremum
of the free energy, equation (2.34), must be the minimum with respect to the parameter λ.
Thus, in terms of the Hessian, equation (B.1), a physically relevant saddle-point solution must
correspond to negative (corresponding to the parameter µ) and one positive (corresponding to
the parameter λ) eigenvalue.

By taking the derivatives of the free energy, equation (2.34), with respect to µ and λ and
using the saddle-point equations (3.6) and (3.7)), we find (form = 0)

∂2f

∂µ2
= 3

2
g[G2]2 (B.2)

∂2f

∂µ∂λ
= −1

2
[G2](1 + (3g − 2u)[G2] + 6gµ[G3]) (B.3)

∂2f

∂λ2
= 1

2
[G2](1 + (3g − 2u)[G2]) + µ[G3](6g[G2] − 1 + 6gµ[G3]). (B.4)

For the paramagnetic state (µ = 0) we obtain

∂2f

∂µ2
= 3

2
g[G2]2 (B.5)

∂2f

∂µ∂λ
= −1

2
[G2](1 + (3g − 2u)[G2]) (B.6)

∂2f

∂λ2
= 1

2
[G2](1 + (3g − 2u)[G2]). (B.7)
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The two eigenvalues of the Hessian, equation (B.1), are then

:
(P )

1,2 = 1

4
[G2](1 + (6g − 2u)[G2])


1 ±

√
1 +

4(1 + (3g − 2u)[G2])

(1 + (6g − 2u)[G2])2
(2u[G2] − 1)


 . (B.8)

One of these eigenvalues is always positive, while the other one is negative when 2u[G2] > 1;
in this case the paramagnetic solution is stable. On the other hand,when 2u[G2] < 1 the second
eigenvalue is also positive, and the paramagnetic solution is unstable. Using equation (3.2)
we find that the condition 2u[G2] > 1 is equivalent to λ(τ) < λo (equation (3.10)), which is
satisfied when τ > τsg. Thus, we can conclude that the paramagnetic solution is stable only
when τ > τsg, while for τ < τsg it becomes unstable.

We study now the stability of the spin-glass solution. Substituting equation (3.8) and
[G3] = C/2λo into equations (B.2)–(B.4) leads to

∂2f

∂µ2
= 3g

8u2
(B.9)

∂2f

∂µ∂λ
= − 3g

8u2

(
1 +

2Cu

λo
µ

)
(B.10)

∂2f

∂λ2
= 3g

8u2

(
1 +

2Cu

λo
µ

)2

− C

2λo
µ. (B.11)

The two corresponding eigenvalues are then

:
(SG)

1,2 = 1

2
(f ′′
µµ + f ′′

λλ)

[
1 ±

√
1 +

3Cg

4u2λo(f ′′
µµ + f ′′

λλ)
2
µ

]
(B.12)

where f ′′
λλ and f ′′

λλ are short-hand notation for ∂2f/∂µ2 and ∂2f/∂λ2, respectively. From
the above expression, one can conclude that in the temperature region τ < τsg where the
spin-glass solution is physical (µ(τ) > 0, equation (3.11)), there is always one positive and
one negative eigenvalue, which means that the spin-glass solution is stable.

Thus for τ > τsg the only stable state of the system is paramagnetic, while for τ < τsg
the paramagnetic solution becomes unstable and the stable state of the system is the spin-glass
phase.

Appendix C

For the spin-glass state in dimensions D = 4 − ε (ε � 1) one again obtains the solutions,
equations (3.8) and (3.9), where instead of equations (3.1) and (3.2) one now has

[Gc] =
∫

|p|<1

dDp

(2π)D
1

p2 + λ
� C

(
1 +

2

ε
λ
(
1 − λ−ε/2))∣∣∣∣

λ�1

� C (C.1)

[
G2
c

] =
∫

|p|<1

dDp

(2π)D
1

(p2 + λ)2
� C

(
2

ε

(
λ−ε/2 − 1

)− λ−ε/2
)
. (C.2)

Then, instead of equation (3.10), equation (3.8) leads to

λo =
[

4Cu
(
1 − ε

2

)
ε + 4Cu

]2/ε

. (C.3)

In the limit ε � u � 1 this result reduces back to equation (3.10), so that one eventually
recovers all the solutions corresponding to the case D = 4 described in section 3.
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Let us consider the other limit

u � ε � 1. (C.4)

In this case equation (C.3) yields

λo �
(

4C

ε
u

)2/ε

. (C.5)

Thus, one can easily observe that when u � ε � 1 one recovers all the solutions described in
section 3, in which the value of λo is now given by equation (C.5). In particular, it is this value
of λo that controls the temperature range of the spin-glass phase separating the paramagnetic
and the ferromagnetic phases.

As in section 5.1 where we discussed the validity of the Gaussian variational approach in
dimensionsD = 4, one should study in place of equations (5.2) and (5.3), the following RG
equations:

d

dξ
g(ξ) = εg − 6C(3g − 4u)g +O(g3; g2u; gu2; u3) (C.6)

d

dξ
u(ξ) = εu− 4C(3g − 4u)u +O(g3; g2u; gu2; u3). (C.7)

These equations show that the higher order corrections of the perturbation theory remain
irrelevant at spatial scales R bounded by the condition

6C|3g0 − 4u0|Rε � ε (C.8)

which corresponds to the temperature scale

τ � τ∗ ∼
(

6C|3g0 − 4u0|
ε

)2/ε

. (C.9)

Thus, as done in section 5.1, to guarantee that the higher order corrections do not destroy the
approximation made in the present approach, one needs λo � τ∗, or(

4C

ε
u

)2/ε

�
(

6C|3g0 − 4u0|
ε

)2/ε

. (C.10)

One can easily verify that this condition is satisfied when

10

9
<
g0

u0
<

14

9
(C.11)

and ε � 1. In other words, we find the same restriction on the parameters g and u as in
D = 4, but in addition one needs the value of ε = 4 −D to be small.
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